El triplete químico. Estado de situación de una idea central en la enseñanza de la Química

Autores/as

  • Guillermo Cutrera Universidad Nacional de Mar del Plata
  • Silvia Stipcich Universidad Nacional del Centro

Resumen

La didáctica de la química ha encontrado en la propuesta del triángulo de Johnstone, un soporte teórico para la investigación sobre la enseñanza disciplinar. Esta propuesta permite indagar las relaciones entre las dimensiones observable-no observable del conocimiento disciplinar como también la relevancia del lenguaje y otras formas de representación en los procesos de enseñanza y aprendizaje de la Química. El triplete o triángulo propuesto por Johnstone ha dado lugar a variadas investigaciones en el campo de la didáctica disciplinar profundizando sus implicaciones teóricas y didácticas. En este trabajo presentamos la propuesta de Jonhstone y nos detenemos en alguna de las discusiones actuales sobre la misma.

Citas

Al-Balushi, S. M. (2013). The effect of different textual narrations on students´ explanations at the submicroscopic level in chemistry. Eurasia Journal of Mathematics, Science & Technology Education, 9(1), 3-10.

Barke, H. D. (1997). The Structure-oriented approach. Demonstrated at the example of interdisciplinary teaching spatial abilities. In W. Gr¨aber & C. Bolte (Eds.), Scientific literacy. Hamburg:

IPN. Becker, N., Stanford, C., Towns, M., & Cole, R. (2015). Translating across macroscopic, submicroscopic, and symbolic levels: the role of instructor facilitation in an inquiry-oriented physical chemistry class. Chemistry Education Research and Practice, 16(4), 769-785.

Camaño, A. (2014). La estructura conceptual de la química: realidad, conceptos y representaciones simbólicas. Alambique: Didáctica de las ciencias experimentales, (78), 7-20.

Cheng, M., & Gilbert, J. K. (2009). Towards a better utilization of diagrams in research into the use of representative levels in chemical education. Multiple representations in chemical education (pp. 55-73). Springer Netherlands.

Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: Diagrams. Multiple representations in chemical education (pp. 169-191). Springer Netherlands.

Gabel, D.L. (1993): «Use of the particle natureof matter in developing understanding». Journal of Chemical Education, vol. 70(3), p.193

Gabel, D. (1999). Improving teaching and learning through chemistry education research: A look to the future. J. Chem. Educ, 76(4), 548.

Georgiadou, A., & Tsaparlis, G. (2000). Chemistry teaching in lower secondary school with methods based on: a) psychological theories; b) the macro, representational, and submicro levels of chemistry. Chemistry Education Research and Practice, 1(2), 217-226.

Gilbert, J. K., & Treagust, D. F. (2009a). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. Multiple representations in chemical education (pp. 1-8). Springer Netherlands.

Gilbert, J. K., & Treagust, D. F. (2009b). Towards a coherent model for macro, submicro and symbolic representations in chemical education. Multiple representations in chemical education (pp. 333-350). Springer Netherlands.

Gilbert, J., & Treagust, D. (2009). Multiple representations in chemical education, models and modeling in science education.New York: Springer,

Graulich, N. (2015). The tip of the iceberg in organic chemistry classes: how do students deal with the invisible? Chemistry Education Research and Practice,16(1), 9-21.

Jackson, P. (1998). La vida en las aulas. Morata, Madrid.

Johnstone, A. H. & El-Banna, H. (1989). "Understanding Learning Difficulties -a predictive model-". Studies in Higher Education, Volme 14, No. 2, pp. 159-168.

Johnstone, A. H. (1991). "Why is science dufficult to learn? Things are seldom what they seem". Journal of Computer Assisted Learning 7, 75-83.

Johnstone, A. H. (1999). "The nature of chemistry". Education in chemistry, pp. 45-47. March.

Johnstone A. H. (2000), Teaching of chemistry - logical or psychological? Chem. Educ.: Res. Pract. Eur., 1(1), 9-15.

Johnstone, A. H. (2007). Science education: We know the answers, let´s look at the problems. Proceedings of the 5th Greek Conference "Science education and new technologies in education", Vol. 1, pp. 1-11.

Johnstone A. H. (2009). Foreword. Multiple representations in chemical education (pp. V-VI). Springer Netherlands.

Johnstone A. H. (2010). You can´t get there from here, J. Chem. Educ., 87, 22-27.

Lemke, J. L. (1997). "Aprender a hablar ciencia". Barcelona: Paidós. Versión original: (1993) "Talking science: language, learning and values". Norwood: Albex Publishing Corporation.

Lewthwaite, B. (2014). Thinking about practical work in chemistry: teachers´ considerations of selected practices for the macroscopic experience. Chemistry Education Research and Practice, 15(1), 35-46.

Li, W. S. S., & Arshad, M. Y. (2014). Application of Multiple Representation Levels in Redox Reactions among Tenth Grade Chemistry Teachers. Journal of Turkish Science Education, 11(3).

Savec, V. F., Sajovic, I., & Grm, K. S. W. (2009). Action research to promote the formation of linkages by chemistry students between the macro, submicro, and symbolic representational levels. Multiple representations in chemical education (pp. 309-331). Springer Netherlands.

Sanjurjo, L. (2000). La formación práctica de los docentes. Reflexión y acción en el aula. Homo Sapiens, Rosario.

Schön, D. (1.998). El profesional reflexivo. Cómo piensan los profesionales cuando actúan. Paidós, Barcelona.

Shulman, L. (2005): Conocimiento y enseñanza: fundamentos de la nueva reforma. Profesorado. Revista de currículum y formación del profesorado, 9, 2.

Taber, K. S. (2009). Learning at the symbolic level. Multiple representations in chemical education(pp. 75-105). Springer Netherlands.

Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156-168.

Talanquer V., (2011), Macro, submicro, and symbolic: the many faces of the chemistry ‘‘triplet´´, Int. J. Sci. Educ., 33(2), 179-195.

Treagust, D. F., & Chandrasegaran, A. L. (2009). The efficacy of an alternative instructional programme designed to enhance secondary students´ competence in the triplet relationship. Multiple representations in chemical education (pp. 151-168). Springer Netherlands.

Tsaparlis, G. (2009). Learning at the macro level: The role of practical work. InMultiple representations in chemical education (pp. 109-136). Springer Netherlands.

Tsaparlis, G., Kolioulis, D., & Pappa, E. (2010). Lower-secondary introductory chemistry course: a novel approach based on science-education theories, with emphasis on the macroscopic approach, and the delayed meaningful teaching of the concepts of molecule and atom. Chemistry Education Research and Practice, 11(2), 107-117

van Berkel, B., Pilot, A., & Bulte, A. M. (2009). Micro-macro thinking in chemical education: Why and how to escape. Multiple representations in chemical education (pp. 31-54). Springer Netherlands.

Zeichner, K. (2010) Nuevas epistemologías en formación del profesorado. Repensando las conexiones entre las asignaturas del campus y las experiencias de prácticas en la formación del profesorado en la Universidad. Revista Interuniversitaria de Formación del Profesorado N° 68. AUPOF, Zaragoza.

Publicado

2016-10-20

Cómo citar

Cutrera, G., & Stipcich, S. (2016). El triplete químico. Estado de situación de una idea central en la enseñanza de la Química. Revista Electrónica Sobre Cuerpos Académicos Y Grupos De Investigación, 3(6). Recuperado a partir de https://mail.cagi.org.mx/index.php/CAGI/article/view/103

Número

Sección

Humanidades y artes